If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-31=-12
We move all terms to the left:
x^2-10x-31-(-12)=0
We add all the numbers together, and all the variables
x^2-10x-19=0
a = 1; b = -10; c = -19;
Δ = b2-4ac
Δ = -102-4·1·(-19)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{11}}{2*1}=\frac{10-4\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{11}}{2*1}=\frac{10+4\sqrt{11}}{2} $
| 5y^2-3y+72=0 | | (3x+4)+(7x-34)=90 | | 2n^2+8n+7=0 | | x/10+1/2=2/5 | | 175=3x^2 | | ½(6x–2)=4 | | N+3n+n=25 | | 1.25=7t43.25 | | 5y-(3y-2)+6=2=(y+4) | | 6p-7=4p+7 | | -36=6y | | 7=43.25t+1.25 | | 7=11-k/2 | | 3a=12.10-a= | | 10y-13=6y+15 | | 3x+2=3x+10=180 | | 5-8b+6-2b=21 | | 4-7x=51 | | 1/2c+30=50 | | 3a=1210-a= | | 4t-19=2t+9 | | 3x+10=3x+2=180 | | 3x+97x+53x+21=0 | | 4p-20=2p+6 | | 8-3(2x-7)=9-4(2x+7) | | 5x(x-2)(x+7)=0 | | 3x+13=6x+5=180 | | 14d=4,200 | | 6x+5=3x+13=180 | | 9t-14=5t+10 | | 3y-6y-10=17 | | 10t-10=6t+18 |